Aha! Chemistry with Prof Bob
  • HOME
  • NAVIGATION
    • Table of contents
    • Index
    • TALK WITH PROF BOB?
  • LEARNING MODULES
    • Chapter 02 Stuff, matter: What is it? >
      • 0200 Stuff, matter: A theory of atoms
      • 0201 Atoms: The building blocks of all stuff
      • 0202 People classifying stuffs. Why?
    • Chapter 05 Chemical reactions, chemical equations >
      • 0500 Chemical reactions vs. chemical equations. Overview
      • 0501 Chemical amount and its unit of measurement, mole
      • 0502 The Avogadro constant: How many is that?
      • 0503 The Avogadro constant: Why is it that number?
      • 0504 Chemical formulas: What can they tell us??
      • 0505 Chemical equations: What can they tell us?
      • 0506 Limiting reactants: How much reaction can happen?
      • 0507 Balanced chemical equations: What are they?
      • 0508 Chemical reactions as competitions
    • Chapter 09 Aqueous solutions >
      • 0901 What is a solution? And what is not?
      • 0902 Miscibility of liquids in each other
      • 0903 Like dissolves like? Shades of grey
      • 0905 Dissolution of ionic salts in water: A competition
      • 0906 Can we predict solubilities of salts?
      • 0907 Solution concentration
      • 0908 Chemical species, speciation in aqueous solution
      • 0909 Solutes: Electrolytes or non-electrolytes?
      • 0910 Electrolytes - strong or weak?
      • 0911 Concentrated, dilute, strong, weak
      • 0912 Species concentration vs. solution concentration
      • 0913 Weak electrolytes: Getting quantitative
    • Chapter 11: Dynamic chemical equilibrium >
      • 1100 Dynamic chemical equilibrium: Overview
      • 1101 Visualising dynamic chemical equilibrium
      • 1102 The jargon of chemical equilibrium
      • 1103 Equilibrium constants: The law of equilibrium
      • 1104 The law of equilibrium: an analogy
    • Chapter 22 Spectroscopy >
      • 2200 Spectroscopy: Overview and preview
      • 2201 Quantisation of forms of energy
      • 2202 Light: Wave-particle "duality"
      • 2203 Ultraviolet-visible spectroscopy
      • 2204 Beer’s law: How much light is transmitted?
    • Chapter 27 Communicating chemistry >
      • 2700 Overview, preview
      • 2703 The jargon we use
  • TEACHERS' CORNER
    • T01 Communicating chemistry
    • T02 Beer's law
    • T03 Professional amnesia of the chemistry teaching professio
    • T04 Law of equilibrium
    • T05 Visusalizing dynamic chemical equilibrium
    • Information vs. knowledge
  • PERSONAL GALLERY
    • Family
    • Travel
    • Playful dolphins
    • The University of Western Australia
    • Kings Park
    • Perth
    • At work
    • 999 Thermodynamics






Chapter 11
​
Dynamic chemical equilibrium

Stalactites and stalagmites in a cave: A system on the edge of dynamic chemical equilibrium

​
Picture
The provisional list of modules to be published in this chapter is shown here. Those already published are clearly indicated, and can be accessed through hyperlink by clicking on the module name.

​You are welcome to suggest topics.


1100 OVERVIEW
1101 Visualizing dynamic chemical equilibrium
1102 Chemical equilibrium: The jargon 
1103 The law of equilibrium: Clarifying the meaning of equilibrium constants
1104 Toward equilibrium: How does Q compare with K?
1105
Spontaneous direction of net reaction
1106 Magnitude of K, and extent of reaction
1107 How does K depend on how the reaction equation is written?
1108 Dependence of K on temperature
1109 Ways of "disturbing" a reaction mixture at equilibrium
1110 Le Chatelier's principle, and a better way

1111 Disturbing equilibrium of a reaction in solution: Changing the concentration of one reagent
1112 Disturbing equilibrium of a reaction in solution: Diluting the solution
1113 Disturbing equilibrium of a gas-phase reaction: Changing the concentration of one reagent
1114 Disturbing equilibrium of a gas-phase reaction: Changing the volume of the container
1115 Disturbing equilibrium by by changing the temperature
1116 The header image: Stalactites and stalagmites
1117 Equilibrium vs. kinetics (How far? vs. How fast?)
1118 Activity-based equilibrium constants
​
Picture

LEARNING CHEMISTRY FOR UNDERSTANDING

© The content on any page in this website (video, text, and self-check) may be used without charge for non-commercial educational purposes, provided that acknowledgement is given to the Aha! Learning Chemistry with Prof Bob website, with specification of the URL: ahachemistry.com.
Proudly powered by Weebly
  • HOME
  • NAVIGATION
    • Table of contents
    • Index
    • TALK WITH PROF BOB?
  • LEARNING MODULES
    • Chapter 02 Stuff, matter: What is it? >
      • 0200 Stuff, matter: A theory of atoms
      • 0201 Atoms: The building blocks of all stuff
      • 0202 People classifying stuffs. Why?
    • Chapter 05 Chemical reactions, chemical equations >
      • 0500 Chemical reactions vs. chemical equations. Overview
      • 0501 Chemical amount and its unit of measurement, mole
      • 0502 The Avogadro constant: How many is that?
      • 0503 The Avogadro constant: Why is it that number?
      • 0504 Chemical formulas: What can they tell us??
      • 0505 Chemical equations: What can they tell us?
      • 0506 Limiting reactants: How much reaction can happen?
      • 0507 Balanced chemical equations: What are they?
      • 0508 Chemical reactions as competitions
    • Chapter 09 Aqueous solutions >
      • 0901 What is a solution? And what is not?
      • 0902 Miscibility of liquids in each other
      • 0903 Like dissolves like? Shades of grey
      • 0905 Dissolution of ionic salts in water: A competition
      • 0906 Can we predict solubilities of salts?
      • 0907 Solution concentration
      • 0908 Chemical species, speciation in aqueous solution
      • 0909 Solutes: Electrolytes or non-electrolytes?
      • 0910 Electrolytes - strong or weak?
      • 0911 Concentrated, dilute, strong, weak
      • 0912 Species concentration vs. solution concentration
      • 0913 Weak electrolytes: Getting quantitative
    • Chapter 11: Dynamic chemical equilibrium >
      • 1100 Dynamic chemical equilibrium: Overview
      • 1101 Visualising dynamic chemical equilibrium
      • 1102 The jargon of chemical equilibrium
      • 1103 Equilibrium constants: The law of equilibrium
      • 1104 The law of equilibrium: an analogy
    • Chapter 22 Spectroscopy >
      • 2200 Spectroscopy: Overview and preview
      • 2201 Quantisation of forms of energy
      • 2202 Light: Wave-particle "duality"
      • 2203 Ultraviolet-visible spectroscopy
      • 2204 Beer’s law: How much light is transmitted?
    • Chapter 27 Communicating chemistry >
      • 2700 Overview, preview
      • 2703 The jargon we use
  • TEACHERS' CORNER
    • T01 Communicating chemistry
    • T02 Beer's law
    • T03 Professional amnesia of the chemistry teaching professio
    • T04 Law of equilibrium
    • T05 Visusalizing dynamic chemical equilibrium
    • Information vs. knowledge
  • PERSONAL GALLERY
    • Family
    • Travel
    • Playful dolphins
    • The University of Western Australia
    • Kings Park
    • Perth
    • At work
    • 999 Thermodynamics