Aha! Chemistry with Prof Bob
  • HOME
    • TALK WITH PROF BOB?
  • LEARNING MODULES
    • Chapter 02 Stuff, matter: What is it? >
      • 0200 Stuff, matter: A theory of atoms
      • 0201 Atoms: The building blocks of all stuff
      • 0202 People classifying stuffs. Why?
    • Chapter 05 Chemical reactions and chemical equations >
      • 0500 Chemical reactions vs. chemical equations. Overview
      • 0501 Chemical amount and its unit of measurement, mole
      • 0502 The Avogadro constant: How many is that?
      • 0503 The Avogadro constant: Why is it that number?
      • 0504 Chemical formulas: What can they tell us??
      • 0505 Chemical equations: What can they tell us?
      • 0506 Limiting reactants: How much reaction can happen?
      • 0507 Balanced chemical equations: What are they?
      • 0508 Chemical reactions as competitions
    • CHAPTER 08: Reactions: What happens? >
      • 0803 Categorizaton of reactions
      • 0804 Reactions as competitions
    • Chapter 09 Aqueous solutions >
      • 0901 What is a solution? And what is not?
      • 0902 Miscibility of liquids in each other
      • 0903 Like dissolves like? Shades of grey
      • 0905 Dissolution of ionic salts in water: A competition
      • 0906 Can we predict solubilities of salts?
      • 0907 Solution concentration
      • 0908 Chemical species, speciation in aqueous solution
      • 0909 Solutes: Electrolytes or non-electrolytes?
      • 0910 Electrolytes - strong or weak?
      • 0911 Concentrated, dilute, strong, weak
      • 0912 Species concentration vs. solution concentration
      • 0913 Weak electrolytes: Getting quantitative
    • Chapter 11: Dynamic chemical equilibrium >
      • 1100 Dynamic chemical equilibrium: Overview
      • 1101 Visualising dynamic chemical equilibrium
      • 1102 The jargon of chemical equilibrium
      • 1103 Equilibrium constants: The law of equilibrium
      • 1104 The law of equilibrium: an analogy
    • Chapter 22 Evidence from spectroscopy >
      • 2200 Spectroscopy: Overview and preview
      • 2201 Quantisation of forms of energy
      • 2202 Light: Wave-particle "duality"
      • 2203 Ultraviolet-visible spectroscopy
      • 2204 Beer’s law: How much light is transmitted?
    • ENVIRONMENTAL CHEMISTRY >
      • EARTH'S ATMOSPHERE >
        • Chapter 27 The greenhouse effect, climate change >
          • 2700 The greenhouse effect: overview
          • 2701 Is Earth in energy balance?
          • 2702 CO2 in the atmosphere before 1800
          • 2703 So little CO2! Pffft?
          • 2704 Does CO2 affect Earth's energy balance?
          • 2705 The "greenhouse effect"
          • 2706 Why does CO2 absorb radiation from Earth?
          • 2707 The "enhanced greenhouse effect"
          • 2708 Why doesn't CO2 absorb the radiation from the sun?
          • 2709 Why are N2 and O2 not greenhouse gases?
          • 2710 Doesn't water vapour absorb all the IR?
          • 2711 Carbon dioxide from our cars
          • 2712 The source of energy from combustion
          • 2713 Comparing fuels as energy sources
          • 2714 Methane: How does it compare as a GHG?
          • 2715 Different sorts of pollution of the atmosphere
          • 2716 "Acidification" of seawater
      • FUELS
      • EARTH'S OCEANS AND WATERWAYS
  • TEACHERS' CORNER
    • TC01 Language and meaning in chemistry >
      • TC0101 The jargon we use
    • TC02 REPRESENTATION IN CHEMISTRY
    • TC03 MODELLING IN CHEMISTRY
    • TC04 KNOWING AND LEARNING
    • TC05 Communicating chemistry >
      • TC0501 Overview, preview
    • TC06 COMPLEXITY of LEARNING CHEMISTRY
    • TC07 PEDAGOGOICAL CONTENT KNOWLEDGE, PCK >
      • TC0701 Amnesia of the chemistry teaching professioN
    • MODULE-SPECIFIC PCK >
      • Chapter PCK11 Dynamic chemical equilibrium >
        • PCK1101 Visusalizing dynamic chemical equilibrium
        • PCK1103 Equilibrium constants: The law of equilibrium
      • Chapter PCK22 Evidence from spectroscopy >
        • PCK2204 Beer's law
  • REFERENCE DATA
    • 001 Periodic table
  • NAVIGATION
    • Table of contents
    • Index, alphabetical
Module 2701

Is Earth in energy balance?

What is meant by the term "energy balance" of Earth?

And if Earth is in a state of energy balance, so what?

And if it is not?

Why would it not be?


The notion of energy balance of Earth is fundamental to all of the discussions in this chapter.
​
Prof. Bob gives his class .......

Key ideas

At any time, half of the surface of Earth is illuminated: it is receiving radiations (mostly visible light) from the sun. Of course, as Earth revolves, that half which is illuminated gradually changes, over a 24-hour cycle. Something to do with day and night, I believe .......
Picture
At any time, radiations from the sun fall on half of the surface of Earth.
Image by Arek Socha from Pixabay 
And all the time, energy is being emitted from all over Earth's surface toward space, in all directions. Here is a simplified picture:

Picture
A simplified portrayal of radiations from Sun to Earth, and from Earth toward space.
Energy balance

If the amount of incoming energy (per second) is the same as the amount of outgoing energy (per second), Earth is in a state of energy balance. There is no loss or gain of energy. The temperature of the crust and the atmosphere does not change.
​
​
Earth is in a state of energy balance, and the temperature does not change, if
​

Rate of outgoing radiation = rate of incoming radiation

​

Energy out of balance ...

But if the rate of energy arriving on Earth from the sun is (for whatever reason) greater than the rate of loss of energy from Earth, the energy of Earth will increase, and the temperature will increase.
​
And, conversely, if the rate of loss of energy from Earth is greater than the rate of energy falling upon Earth, the energy will decrease, and the temperature will decrease.
​
Which brings us to the question: If the rate of incoming radiation from the sun is constant (as iit is), how can we explain that the temperature of the surface of Earth is increasing?
Picture
SELF CHECK - Have you got it?
​

Picture
Is Earth in balance (energetically)? What could cause energy balance to be disrupted?
Suppose that Earth is in a state of energy balance. You have a super power that allows you to dial up either an increase or decrease in the rate of incoming radiation, or an increase or decrease in the rate of outgoing radiation.
​
1. Which actions would cause the temperature to rise?

2. Which actions would cause the temperature to fall?

3. (Foreshadowing) Which of the above (although not activated by you) do you think is bringing about global warming?

​
ANSWERS
​

1. Either increase the rate of incoming radiation, or decrease the rate of outgoing radiation.
2. Either decrease the rate of incoming radiation, or increase the rate of outgoing radiation.
3. "Greenhouse gases" decrease the rate of outgoing radiation. See Module 2705 The "greenhouse effect".
Finding your way around .....

You can browse or search the Aha! Learning chemistry website in the following ways:
  • Use the drop-down menus from the buttons at the top of each page to browse the modules chapter-by-chapter.
  • Click to go to the TABLE OF CONTENTS (also from the NAVIGATION button) to see all available chapters and modules in numbered sequence.
  • Click to go to the ALPHABETICAL INDEX. (also from the NAVIGATION ​button).
  • Enter a word or phrase in the Search box at the top of each page.
Picture

LEARNING CHEMISTRY FOR UNDERSTANDING

Email: [email protected]


​© The content on any page in this website (video, text, original images, and self-check) may be used without charge for non-commercial educational purposes, provided that acknowledgement is given to the Aha! Learning Chemistry with Prof Bob website, with specification of the URL: https://www.ahachemistry.com/​
  • HOME
    • TALK WITH PROF BOB?
  • LEARNING MODULES
    • Chapter 02 Stuff, matter: What is it? >
      • 0200 Stuff, matter: A theory of atoms
      • 0201 Atoms: The building blocks of all stuff
      • 0202 People classifying stuffs. Why?
    • Chapter 05 Chemical reactions and chemical equations >
      • 0500 Chemical reactions vs. chemical equations. Overview
      • 0501 Chemical amount and its unit of measurement, mole
      • 0502 The Avogadro constant: How many is that?
      • 0503 The Avogadro constant: Why is it that number?
      • 0504 Chemical formulas: What can they tell us??
      • 0505 Chemical equations: What can they tell us?
      • 0506 Limiting reactants: How much reaction can happen?
      • 0507 Balanced chemical equations: What are they?
      • 0508 Chemical reactions as competitions
    • CHAPTER 08: Reactions: What happens? >
      • 0803 Categorizaton of reactions
      • 0804 Reactions as competitions
    • Chapter 09 Aqueous solutions >
      • 0901 What is a solution? And what is not?
      • 0902 Miscibility of liquids in each other
      • 0903 Like dissolves like? Shades of grey
      • 0905 Dissolution of ionic salts in water: A competition
      • 0906 Can we predict solubilities of salts?
      • 0907 Solution concentration
      • 0908 Chemical species, speciation in aqueous solution
      • 0909 Solutes: Electrolytes or non-electrolytes?
      • 0910 Electrolytes - strong or weak?
      • 0911 Concentrated, dilute, strong, weak
      • 0912 Species concentration vs. solution concentration
      • 0913 Weak electrolytes: Getting quantitative
    • Chapter 11: Dynamic chemical equilibrium >
      • 1100 Dynamic chemical equilibrium: Overview
      • 1101 Visualising dynamic chemical equilibrium
      • 1102 The jargon of chemical equilibrium
      • 1103 Equilibrium constants: The law of equilibrium
      • 1104 The law of equilibrium: an analogy
    • Chapter 22 Evidence from spectroscopy >
      • 2200 Spectroscopy: Overview and preview
      • 2201 Quantisation of forms of energy
      • 2202 Light: Wave-particle "duality"
      • 2203 Ultraviolet-visible spectroscopy
      • 2204 Beer’s law: How much light is transmitted?
    • ENVIRONMENTAL CHEMISTRY >
      • EARTH'S ATMOSPHERE >
        • Chapter 27 The greenhouse effect, climate change >
          • 2700 The greenhouse effect: overview
          • 2701 Is Earth in energy balance?
          • 2702 CO2 in the atmosphere before 1800
          • 2703 So little CO2! Pffft?
          • 2704 Does CO2 affect Earth's energy balance?
          • 2705 The "greenhouse effect"
          • 2706 Why does CO2 absorb radiation from Earth?
          • 2707 The "enhanced greenhouse effect"
          • 2708 Why doesn't CO2 absorb the radiation from the sun?
          • 2709 Why are N2 and O2 not greenhouse gases?
          • 2710 Doesn't water vapour absorb all the IR?
          • 2711 Carbon dioxide from our cars
          • 2712 The source of energy from combustion
          • 2713 Comparing fuels as energy sources
          • 2714 Methane: How does it compare as a GHG?
          • 2715 Different sorts of pollution of the atmosphere
          • 2716 "Acidification" of seawater
      • FUELS
      • EARTH'S OCEANS AND WATERWAYS
  • TEACHERS' CORNER
    • TC01 Language and meaning in chemistry >
      • TC0101 The jargon we use
    • TC02 REPRESENTATION IN CHEMISTRY
    • TC03 MODELLING IN CHEMISTRY
    • TC04 KNOWING AND LEARNING
    • TC05 Communicating chemistry >
      • TC0501 Overview, preview
    • TC06 COMPLEXITY of LEARNING CHEMISTRY
    • TC07 PEDAGOGOICAL CONTENT KNOWLEDGE, PCK >
      • TC0701 Amnesia of the chemistry teaching professioN
    • MODULE-SPECIFIC PCK >
      • Chapter PCK11 Dynamic chemical equilibrium >
        • PCK1101 Visusalizing dynamic chemical equilibrium
        • PCK1103 Equilibrium constants: The law of equilibrium
      • Chapter PCK22 Evidence from spectroscopy >
        • PCK2204 Beer's law
  • REFERENCE DATA
    • 001 Periodic table
  • NAVIGATION
    • Table of contents
    • Index, alphabetical